

Test Report issued under the responsibility of:

The Standard Institution of Israel

TEST REPORT IEC 62471 Photobiological safety of lamps and lamp systems

Report Reference No:	9712301837
Date of issue:	24.04.2017
Total number of pages:	19
CB Testing Laboratory:	The Standards Institution of Israel
Address:	42 Chaim Levanon St., Tel Aviv 69977, Israel
Applicant's name:	TzubaVision Eco Light Systems Ltd
Address:	Kibbutz Tzuba, 9087000, Israel
Test specification:	
Standard:	IEC 62471:2006 (First Edition)
Test procedure:	СВ
Non-standard test method:	N/A
Test Report Form No	IEC62471A
TRF Originator:	VDE Testing and Certification Institute
Master TRF:	Dated 2009-05

Copyright © 2009 IEC System for Conformity Testing and Certification of Electrical Equipment (IECEE), Geneva, Switzerland. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the IECEE is acknowledged as copyright owner and source of the material. IECEE takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

If this Test Report Form is used by non-IECEE members, the IECEE/IEC logo and the reference to the CB Scheme procedure shall be removed.

This report is not valid as a CB Test Report unless signed by an approved CB Testing Laboratory and appended to a CB Test Certificate issued by an NCB in accordance with IECEE 02.

Test item description:	Self-Ballasted Linear LED Light Modules
Trade Mark:	tzubavision
Manufacturer:	TzubaVision Eco Light Systems Ltd
Model/Type reference:	LDLS 1120, LDLS 560, LDLS 280, LDLS 140
Ratings:	220/240Va.c 50/60 Hz: 180 mA 36W, 90 mA 18W, 45 mA 9W, 25 mA 4.5W

Supervised by (+ signature).....:

Testing location/ address:

		120	
Electronics	R.	Telematics	Laboratory
Liectionics	u	referridatios	Laboratory

Page 2 of 19 Report No.: 9712301837 Testing procedure and testing location: **Testing Laboratory:** The Standards Institution of Israel Testing location/ address: 42 Chaim Levanon St., Tel Aviv 69977, Israel **Associated CB Laboratory:** Testing location/ address Tested by (name + signature).....: **Daniel Gottreich** Approved by (+ signature) Irina Antonov Testing procedure: TMP Tested by (name + signature).....: Approved by (+ signature): Testing location/ address: Testing procedure: WMT Tested by (name + signature).....: Witnessed by (+ signature).....: Approved by (+ signature) Testing location/ address: Testing procedure: SMT Tested by (name + signature).....: Approved by (+ signature) Supervised by (+ signature).....: Testing location/ address: Testing procedure: RMT Tested by (name + signature).....: Approved by (+ signature)

Electronics & Telematics Laboratory

Page 3 of 19 Report No.: 9712301837

Summary of testing:	
Tests performed (name of test and test clause):	Testing location: SII
4.3.3 Retinal blue light hazard exposure limit	42 Chaim Levanon St., Tel Aviv 69977, Israel
4.3.5 Retinal thermal hazard exposure limit	
4.3.7 Infrared radiation hazard exposure limits for the eye	
Summary of compliance with National Differences: N $\!\!/$	A
Copy of marking plate: N/A	

Electronics & Telematics Laboratory

Page 4 of 19 Report No.: 9712301837

Test item particulars	Troport from of 1250 foot
Tested lamp	continuous wave lamps pulsed lamps
Tested lamp system	Д захимира
Lamp classification group:	exempt risk 1 risk 2 risk 3
Lamp cap	
Bulb	LED
Rated of the lamp	Electrical:- 220/240Va.c 50/60 Hz: 180 mA 36W, 90 mA 18W, 45 mA 9W, 25 mA 4.5W
Furthermore marking on the lamp:	
Seasoning of lamps according IEC standard:	
Used measurement instrument:	
Temperature by measurement:	25 °C
Information for safety use:	
Possible test case verdicts:	
- test case does not apply to the test object:	N/A
- test object does meet the requirement:	P (Pass)
- test object does not meet the requirement:	F (Fail)
Testing:	
Date of receipt of test item:	02/04/2017
Date (s) of performance of tests:	04/2017
General remarks:	
The test results presented in this report relate only to the This report shall not be reproduced, except in full, without "(See Enclosure #)" refers to additional information as "(See appended table)" refers to a table appended to the Throughout this report a comma (point) is used as the List of test equipment must be kept on file and available.	ut the written approval of the Issuing testing laboratory. opended to the report. ne report. e decimal separator.
General product information:	
LDLS Linear Detachable Light System • Self-Ballasted & Self Cooled LED modules • 4800 Lumen/Meter • Dimmable • Emergency Light Included	
LED Details: Manufactured by Lumileds Commercial Shanghai co. 4000K 240mA, 6.8Vd.c, 0.7W	LTD.
L128-4080CA35Z00T1	

Electronics & Telematics Laboratory

	Page 5 of 19 Report No.: 97			
IEC 62471				
Clause	Requirement + Test	Result – Remark	Verdict	
4	EXPOSURE LIMITS			
4.1	General		Pass	
	The exposure limits in this standard is not less than 0,01 ms and not more than any 8-hour period and should be used as guides in the control of exposure	Not less than 0,01 ms	Pass	
	Detailed spectral data of a light source are generally required only if the luminance of the source exceeds 10 ⁴ cd m ⁻²		N/A	
4.3	Hazard exposure limits			
4.3.1	Actinic UV hazard exposure limit for the skin and eye	No UV radiation (LED equipment)	N/A	
	The exposure limit for effective radiant exposure is 30 J·m ⁻² within any 8-hour period	No UV radiation (LED equipment)	N/A	
	To protect against injury of the eye or skin from ultraviolet radiation exposure produced by a broadband source, the effective integrated spectral irradiance, E _S , of the light source shall not exceed the levels defined by:	No UV radiation (LED equipment)	N/A	
	$E_{s} \cdot t = \sum_{200}^{400} \sum_{t} E_{\lambda}(\lambda, t) \cdot S_{UV}(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 30$ J·m ⁻²	No UV radiation (LED equipment)	N/A	
	The permissible time for exposure to ultraviolet ra- diation incident upon the unprotected eye or skin shall be computed by:	No UV radiation (LED equipment)	N/A	
	$t_{\text{max}} = \frac{30}{E_{\text{S}}}$ s	No UV radiation (LED equipment)	N/A	
4.3.2	Near-UV hazard exposure limit for eye	,		
	For the spectral region 315 nm to 400 nm (UV-A) the total radiant exposure to the eye shall not exceed 10000 J m ⁻² for exposure times less than 1000 s. For exposure times greater than 1000 s (approximately 16 minutes) the UV-A irradiance for the unprotected eye, E _{UVA} , shall not exceed 10 W m ⁻² .	No Near-UV radiation (LED equipment)	N/A	
	The permissible time for exposure to ultraviolet radiation incident upon the unprotected eye for time less than 1000 s, shall be computed by:	No Near-UV radiation (LED equipment)	N/A	
	$t_{\text{max}} \le \frac{10\ 000}{E_{\text{UVA}}} \qquad \text{s}$	No Near-UV radiation (LED equipment)	N/A	
4.3.3	Retinal blue light hazard exposure limit			

Electronics & Telematics Laboratory

Requirement + Test	I	
Requirement + Test		
	Result – Remark	Verdict
To protect against retinal photochemical injury from chronic blue-light exposure, the integrated spectral radiance of the light source weighted against the blue-light hazard function, $B(\lambda)$, i.e., the blue-light weighted radiance , L_B , shall not exceed the levels defined by:		Pass
$L_{B} \cdot t = \sum_{300}^{700} \sum_{t} L_{\lambda}(\lambda, t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 10^{6} \qquad J \cdot m^{-2} \cdot sr^{-1}$	for t < 10 ⁴ s	N/A
	for t > 10 ⁴ s	Pass
Retinal blue light hazard exposure limit - small source	<u> </u> 	
Thus the spectral irradiance at the eye E_{λ} , weighted against the blue-light hazard function $B(\lambda)$ shall not exceed the levels defined by:	Not small source	N/A
$E_{B} \cdot t = \sum_{300}^{700} \sum_{t} E_{\lambda}(\lambda, t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 100 \qquad J \cdot m^{-2}$		N/A
$E_{\rm B} = \sum_{300}^{700} E_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda \le 1$ $W \cdot m^{-2}$	for t > 100 s	N/A
Retinal thermal hazard exposure limit	<u> </u>	
To protect against retinal thermal injury, the integrated spectral radiance of the light source, L_{λ} , weighted by the burn hazard weighting function $R(_{\lambda})$ (from Figure 4.2 and Table 4.2), i.e., the burn hazard weighted radiance, shall not exceed the levels defined by:	See Appendix 1	Pass
$L_{\rm R} = \sum_{380}^{1400} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda \le \frac{50000}{\alpha \cdot t^{0,25}}$ W · m ⁻² · sr ⁻¹		Pass
Retinal thermal hazard exposure limit – weak visual s	stimulus	
For an infrared heat lamp or any near-infrared source where a weak visual stimulus is inadequate to activate the aversion response, the near infrared (780 nm to 1400 nm) radiance, L _{IR} , as viewed by the eye for exposure times greater than 10 s shall be limited to:		N/A
$L_{\rm IR} = \sum_{780}^{1400} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda \le \frac{6000}{\alpha} \qquad \qquad \text{W} \cdot \text{m}^{-2} \cdot \text{sr}^{-1}$	t > 10 s	N/A
Infrared radiation hazard exposure limits for the eve	<u> </u>	N/A
	chronic blue-light exposure, the integrated spectral radiance of the light source weighted against the blue-light hazard function, B(λ), i.e., the blue-light weighted radiance, L _B , shall not exceed the levels defined by: $L_{B} \cdot t = \sum_{300}^{700} \sum_{t} L_{\lambda}(\lambda,t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 10^{6} \qquad \text{J} \cdot \text{m}^{-2} \cdot \text{sr}^{-1}$ $L_{B} = \sum_{300}^{700} L_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda \le 100 \qquad \text{W} \cdot \text{m}^{-2} \cdot \text{sr}^{-1}$ Retinal blue light hazard exposure limit - small source. Thus the spectral irradiance at the eye E _{λ} , weighted against the blue-light hazard function B(λ) shall not exceed the levels defined by: $E_{B} \cdot t = \sum_{300}^{700} \sum_{t} E_{\lambda}(\lambda,t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 100 \qquad \text{J} \cdot \text{m}^{-2}$ $E_{B} = \sum_{300}^{700} E_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda \le 1 \qquad \text{W} \cdot \text{m}^{-2}$ Retinal thermal hazard exposure limit. To protect against retinal thermal injury, the integrated spectral radiance of the light source, L _{λ} , weighted by the burn hazard weighting function R($_{\lambda}$) (from Figure 4.2 and Table 4.2), i.e., the burn hazard weighted radiance, shall not exceed the levels defined by: $L_{R} = \sum_{380}^{1400} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda \le \frac{50000}{\alpha \cdot t^{0.25}} \qquad \text{W} \cdot \text{m}^{-2} \cdot \text{sr}^{-1}$ Retinal thermal hazard exposure limit — weak visual stimulus is inadequate to activate the aversion response, the near infrared source where a weak visual stimulus is inadequate to activate the aversion response, the near infrared (780 nm to 1400 nm) radiance, L _{IR} , as viewed by the eye for exposure times greater than 10 s shall be limited to:	chronic blue-light exposure, the integrated spectral radiance of the light source weighted against the blue-light hazard function, $B(\lambda)$, i.e., the blue-light weighted radiance , L_B , shall not exceed the levels defined by: $L_B \cdot t = \sum_{300}^{700} \sum_t L_\lambda(\lambda,t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 10^6 \qquad J \cdot m^{-2} \cdot sr^{-1} \qquad \text{for } t < 10^4 \text{ s}$ $L_B = \sum_{300}^{700} L_\lambda \cdot B(\lambda) \cdot \Delta \lambda \le 100 \qquad W \cdot m^{-2} \cdot sr^{-1} \qquad \text{for } t > 10^4 \text{ s}$ $Retinal blue light hazard exposure limit - small source$ $Thus the spectral irradiance at the eye E_\lambda, \text{ weighted against the blue-light hazard function } B(\lambda) \text{ shall not exceed the levels defined by:}$ $E_B \cdot t = \sum_{300}^{700} \sum_t E_\lambda(\lambda,t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 100 \qquad J \cdot m^{-2}$ $E_B = \sum_{300}^{700} E_\lambda \cdot B(\lambda) \cdot \Delta \lambda \le 1 \qquad W \cdot m^{-2} \qquad \text{for } t > 100 \text{ s}$ $Retinal thermal hazard exposure limit$ $To protect against retinal thermal injury, the integrated spectral radiance of the light source, L_\lambda, weighted by the burn hazard weighting function R(\lambda) (from Figure 4.2 and Table 4.2), i.e., the burn hazard weighted radiance, shall not exceed the levels defined by: L_R = \sum_{380}^{1400} L_\lambda \cdot R(\lambda) \cdot \Delta \lambda \le \frac{50000}{\alpha \cdot t^{0.25}} \qquad W \cdot m^{-2} \cdot sr^{-1} Retinal thermal hazard exposure limit - weak visual stimulus For an infrared heat lamp or any near-infrared source where a weak visual stimulus is inadequate to activate the aversion response, the near infrared (780 nm to 1400 nm) radiance, L_{IR}, as viewed by the eye for exposure times greater than 10 s shall be limited to: L_{IR} = \sum_{780}^{1400} L_\lambda \cdot R(\lambda) \cdot \Delta \lambda \le \frac{6000}{\alpha} \qquad W \cdot m^{-2} \cdot sr^{-1} t > 10 \text{ s} L_{IR} = \sum_{780}^{1400} L_\lambda \cdot R(\lambda) \cdot \Delta \lambda \le \frac{6000}{\alpha} \qquad W \cdot m^{-2} \cdot sr^{-1}$

Electronics & Telematics Laboratory

	Page 7 of 19	Report	No.: 971230183	
IEC 62471				
Clause	Requirement + Test	Result – Remark	Verdict	
	The avoid thermal injury of the cornea and possible delayed effects upon the lens of the eye (cataractogenesis), ocular exposure to infrared radiation, $E_{\rm IR}$, over the wavelength range 780 nm to 3000 nm, for times less than 1000 s, shall not exceed:		N/A	
	$E_{\rm IR} = \sum_{780}^{3000} E_{\lambda} \cdot \Delta \lambda \le 18000 \cdot t^{-0.75}$ W·m ⁻²	t ≤ 1000 s	N/A	
	For times greater than 1000 s the limit becomes:			
	$E_{\rm IR} = \sum_{780}^{3000} E_{\lambda} \cdot \Delta \lambda \le 100$ W·m ⁻²	t > 1000 s	N/A	
4.3.8	Thermal hazard exposure limit for the skin			
	Visible and infrared radiant exposure (380 nm to 3000 nm) of the skin shall be limited to:		Pass	
	$E_{\text{H}} \cdot t = \sum_{380}^{3000} \sum_{t} E_{\lambda} (\lambda, t) \cdot \Delta t \cdot \Delta \lambda \le 20000 \cdot t^{0.25}$ J · m ⁻²		Pass	

5	MEASUREMENT OF LAMPS AND LAMP SYSTEMS	
5.1	Measurement conditions	
	Measurement conditions shall be reported as part of the evaluation against the exposure limits and the assignment of risk classification.	Pass
5.1.1	Lamp ageing (seasoning)	N/A
	Seasoning of lamps shall be done as stated in the appropriate IEC lamp standard.	N/A
5.1.2	Test environment	N/A
	For specific test conditions, see the appropriate IEC lamp standard or in absence of such standards, the appropriate national standards or manufacturer's recommendations.	N/A
5.1.3	Extraneous radiation	N/A
	Careful checks should be made to ensure that extraneous sources of radiation and reflections do not add significantly to the measurement results.	N/A
5.1.4	Lamp operation	Pass
	Operation of the test lamp shall be provided in accordance with:	Pass
	the appropriate IEC lamp standard, or	N/A
	the manufacturer's recommendation	Pass

Electronics & Telematics Laboratory

	Page 8 of 19 Report No.: 9712301					
	IEC 62471					
Clause	Requirement + Test	Result – Remark	Verdic			
5.1.5	Lamp system operation		Pass			
	The power source for operation of the test lamp shall be provided in accordance with:		Pass			
	the appropriate IEC standard, or		N/A			
	the manufacturer's recommendation		Pass			
5.2	Measurement procedure	1				
5.2.1	Irradiance measurements		Pass			
	Minimum aperture diameter 7mm.		Pass			
	Maximum aperture diameter 50 mm.	7mm used	N/A			
	The measurement shall be made in that position of the beam giving the maximum reading.		Pass			
	The measurement instrument is adequate calibrated.		Pass			
5.2.2	Radiance measurements	Alternative method	N/A			
5.2.2.1	Standard method	Alternative method	N/A			
	The measurements made with an optical system.		N/A			
	The instrument shall be calibrated to read in absolute radiant power per unit receiving area and per unit solid angle to acceptance averaged over the field of view of the instrument.		N/A			
5.2.2.2	Alternative method		Pass			
	Alternatively to an imaging radiance set-up, an irradiance measurement set-up with a circular field stop placed at the source can be used to perform radiance measurements.		Pass			
5.2.3	Measurement of source size	LED matrix	N/A			
	The determination of α , the angle subtended by a source, requires the determination of the 50% emission points of the source.	$\alpha_{\text{matrix LED}} = \text{D/r} = $ [(114+3.5)/2]/200=293.75mrad $\alpha_{\text{matrix LED}} > \alpha_{\text{max}} = 100 \text{ mrad}$	N/A			
5.2.4	Pulse width measurement for pulsed sources	CW LED	N/A			
	The determination of Δt , the nominal pulse duration of a source, requires the determination of the time during which the emission is > 50% of its peak value.		N/A			
5.3	Analysis methods					
5.3.1	Weighting curve interpolations	Curve interpolations	Pass			
	To standardize interpolated values, use linear interpolation on the log of given values to obtain intermediate points at the wavelength intervals desired.		Pass			
5.3.2	Calculations		Pass			

Electronics & Telematics Laboratory

Report No.: 9712301837

Page 9 of 19

	Page 9 of 19	Report No	.: 9/1230183/		
IEC 62471					
Clause	Requirement + Test	Result – Remark	Verdict		
					
	The calculation of source hazard values shall be performed by weighting the spectral scan by the appropriate function and calculating the total weighted energy.		Pass		
5.3.3	Measurement uncertainty	Uncertainty 7.5%,K=2	Pass		
	The quality of all measurement results must be quantified by an analysis of the uncertainty.		Pass		
6	LAMP CLASSIFICATION				
	For the purposes of this standard it was decided that the values shall be reported as follows:	See table 6.1	N/A		
	 for lamps intended for general lighting service, the hazard values shall be reported as either ir- radiance or radiance values at a distance which produces an illuminance of 500 lux, but not at a distance less than 200 mm 		N/A		
	 for all other light sources, including pulsed lamp sources, the hazard values shall be reported at a distance of 200 mm 		Pass		
6.1	Continuous wave lamps				
6.1.1	Exempt Group				
	In the except group are lamps, which does not pose any photobiological hazard. The requirement is met by any lamp that does not pose:	Exempt Group	Pass		
	 an actinic ultraviolet hazard (E_s) within 8-hours exposure (30000 s), nor 	Exempt Group	Pass		
	 a near-UV hazard (E_{UVA}) within 1000 s, (about 16 min), nor 	Exempt Group	Pass		
	 a retinal blue-light hazard (L_B) within 10000 s (about 2,8 h), nor 	Exempt Group	Pass		
	 a retinal thermal hazard (L_R) within 10 s, nor 	Exempt Group	Pass		
	 an infrared radiation hazard for the eye (E_{IR}) within 1000 s 	Exempt Group	Pass		
6.1.2	Risk Group 1 (Low-Risk)				
	In this group are lamps, which exceeds the limits for the except group but that does not pose:		N/A		
	 an actinic ultraviolet hazard (E_S) within 10000 s, nor 	Exempt Group	N/A		
	 a near ultraviolet hazard (E_{UVA}) within 300 s, nor 	Exempt Group	N/A		
	 a retinal blue-light hazard (L_B) within 100 s, nor 	Exempt Group	Pass		
	 a retinal thermal hazard (L_R) within 10 s, nor 	Exempt Group	N/A		

Electronics & Telematics Laboratory

Page 10 of 19 Report No.: IEC 62471					
Clause					
Clause	Requirement + Test	Result – Remark	Verdict		
	 an infrared radiation hazard for the eye (E_{IR}) within 100 s 	Exempt Group	N/A		
	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (L_{IR}), within 100 s are in Risk Group 1.		N/A		
6.1.3	Risk Group 2 (Moderate-Risk)				
	This requirement is met by any lamp that exceeds the limits for Risk Group 1, but that does not pose:		N/A		
	 an actinic ultraviolet hazard (E_S) within 1000 s exposure, nor 		N/A		
	 a near ultraviolet hazard (E_{UVA}) within 100 s, nor 		N/A		
	 a retinal blue-light hazard (L_B) within 0,25 s (aversion response), nor 		N/A		
	 a retinal thermal hazard (L_R) within 0,25 s (aversion response), nor 		N/A		
	 an infrared radiation hazard for the eye (E_{IR}) within 10 s 		N/A		
	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (L_{IR}), within 10 s are in Risk Group 2.		N/A		
6.1.4	Risk Group 3 (High-Risk)				
	Lamps which exceed the limits for Risk Group 2 are in Group 3.		N/A		
6.2	Pulsed lamps				
	Pulse lamp criteria shall apply to a single pulse and to any group of pulses within 0,25 s.	CW operation	N/A		
	A pulsed lamp shall be evaluated at the highest nominal energy loading as specified by the manufacturer.	CW operation	N/A		
	The risk group determination of the lamp being tested shall be made as follows:	CW operation	N/A		
	 a lamp that exceeds the exposure limit shall be classified as belonging to Risk Group 3 (High- Risk) 	CW operation	N/A		
	 for single pulsed lamps, a lamp whose weighted radiant exposure or weighted radiance does is below the EL shall be classified as belonging to the Exempt Group 	CW operation	N/A		
	 for repetitively pulsed lamps, a lamp whose weighted radiant exposure or weighted radiance dose is below the EL, shall be evaluated using the continuous wave risk criteria discussed in clause 6.1, using time averaged values of the pulsed emission 	CW operation	N/A		

Electronics & Telematics Laboratory

Report No.: 9712301837

Page 11 of 19

Table 4.1 Spectral weighting function for assessing ultraviolet hazards for skin and eye **UV** hazard function **UV** hazard function Wavelength¹ Wavelength λ, nm $S_{uv}(\lambda)$ λ, nm S_{UV}(λ) 200 0,030 313* 0,006 205 0,051 315 0,003 210 0,075 316 0,0024 317 0,0020 215 0,095 220 0,120 318 0,0016 225 0,150 319 0,0012 230 0,190 320 0,0010 235 0,240 322 0,00067 0,300 0,00054 240 323 325 0,00050 245 0,360 0,00044 250 0,430 328 254* 0,500 330 0,00041 255 0,520 333* 0,00037 260 0,650 335 0,00034 265 0,810 340 0,00028 270 1,000 345 0,00024 275 0,960 350 0,00020 280* 355 0,00016 0,880 285 0.00013 0,770 360 290 0,640 365* 0,00011 295 0,540 370 0.000093 297* 0,460 375 0,000077 300 0,300 380 0,000064 303* 0,120 385 0,000053 0,060 0,000044 305 390 308 0,026 395 0,000036 310 0.015 400 0.000030

Wavelengths chosen are representative: other values should be obtained by logarithmic interpolation at intermediate wavelengths.

^{*} Emission lines of a mercury discharge spectrum.

Electronics & Telematics Laboratory

Page 12 of 19 Report No.: 971230						
IEC 62471						
Clause	Requirement + Test		Result – Remark	Verdict		

Wavelength	Blue-light hazard function	Burn hazard functio
nm	B (λ)	R (λ)
300	0,01	
305	0,01	
310	0,01	
315	0,01	
320	0,01	
325	0,01	
330	0,01	
335	0,01	
340	0,01	
345	0,01	
350	0,01	
355	0,01	
360	0,01	
365	0,01	
370	0,01	
375	0,01	
380	0,01	0,1
385	0,013	0,13
390	0,025	0,25
395	0,05	0,5
400	0,10	1,0
405	0,20	2,0
410	0,40	4,0
415	0,80	8,0
420	0,90	9,0
425	0,95	9,5
430	0,98	9,8
435	1,00	10,0
440	1,00	10,0
445	0,97	9,7
450	0,94	9,4
455	0,90	9,0
460	0,80	8,0
465	0,70	7,0
470	0,62	6,2
475	0,55	5,5
480	0,45	4,5
485	0,40	4,0
490	0,22	2,2
495	0,16	1,6
500-600	10 ^[(450-\lambda)/50]	1,0
600-700	0,001	1,0
700-1050		10 ^[(700-\lambda)/500]
1050-1150		0,2 0,2·10 ^{0,02(1150-λ)}
1150-1200		0,2·10 ^{0,02(1150-λ)}
1200-1400		0,02

Electronics & Telematics Laboratory

Page 13 of 19 Report No.: 97						
IEC 62471						
Clause	Requirement + Test		Result – Remark	Verdict		

Table 5.4	Summary of the ELs for the surface of the skin or cornea (irradiance based values)									
Hazard Name		Relevant equation	Wavelength range nm	Exposure duration sec	Limiting aperture rad (deg)	EL in terms of con- stant irradiance W•m ⁻²				
Actinic UV skin & eye		$E_{S} = \sum E_{\lambda} \bullet S(\lambda) \bullet \Delta \lambda$	200 – 400	< 30000	1,4 (80)	30/t				
Eye UV-A		$E_{UVA} = \sum E_{\lambda} \bullet \Delta \lambda$	315 – 400	≤1000 >1000	1,4 (80)	10000/t 10				
Blue-light small source		$E_B = \sum E_\lambda \bullet B(\lambda) \bullet \Delta \lambda$	300 – 700	≤100 >100	< 0,011	100/t 1,0				
Eye IR		$E_{IR} = \sum E_{\lambda} \bullet \Delta \lambda$	780 –3000	≤1000 >1000	1,4 (80)	18000/t ^{0,75} 100				
Skin thermal		$E_H = \sum E_\lambda \bullet \Delta \lambda$	380 – 3000	< 10	2π sr	20000/t ^{0,75}				

Table 5.5	Summary of the ELs for the retina (radiance based values)						-
Hazard Name		ard Name Relevant equation		Exposure duration sec	Field of view radians	EL in terms of constant radiance W•m ⁻² •sr ⁻¹)	
				0,25 – 10	0,011•√(t/10)	10 ⁶	/t
B		- \(\Bar{\Bar{\Bar{\Bar{\Bar{\Bar{\Bar{\B	000 700	10-100	0,011	10 ⁶	/t
Blue light		$L_{B} = \sum L_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda$	300 – 700	100-10000	0,0011•√t	10 ⁶	/t
				≥ 10000	0,1	100)
Retinal		L = ΣL + D(λ) + Δλ	200 4400	< 0,25	0,0017	50000/(0	x•t ^{0,25})
thermal		$L_{R} = \sum L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda$	380 – 1400	0,25 – 10	0,011•√(t/10)	50000/(0	x•t ^{0,25})
Retinal thermal (weak visual stimulus)		$L_{IR} = \sum L_{\lambda} \bullet R(\lambda) \bullet \Delta \lambda$	780 – 1400	> 10	0,011	6000)/α

Report No.: 9712301837

Page 14 of 19

Appendix 1 Spectral Irradiance test and calculations Spectral irradiance for 1.4rad

Measurements were performed at a distance of 200mm from LED

Page 15 of 19

Report No.: 9712301837

Calculation for classification With diffuser

				IEC 624	71				
Clause	Requirem	ent + Te	st	Result – R	emark				Verdict
Table 6.1	Emission	limits for	risk groups o	of continuou	ıs wave lamps- T	ested at 2	200mm		Pass
Risk	Action				Emis	ssion Meas	surement		
	spec-	Sym- bol	Units	E	xempt	Low	risk	Mod	risk
	trum			Limit	Result	Limit	Result	Limit	Result
Actinic UV	SUV(λ)	Es	W•m-2	0,001	N/A	0,003	N/A	0,03	N/A
Near UV		EUVA	W•m-2	10	N/A	33	N/A	100	N/A
Blue light	Β(λ)	LB	W•m-2•sr-1	100	14	10000	N/A	4000000	N/A
Blue light, small source	Β(λ)	EB	W•m-2	1,0*	N/A	1,0	N/A	400	N/A
Retinal thermal	R(λ)	LR	W•m-2•sr-1	28,000/α =2,8E5	1122	28000/α	N/A	71000/α	N/A
Retinal thermal, weak visual stimulus**	R(\lambda)	LIR	W•m-2•sr-1	6000/α	N/A	6000/α	N/A	6000/α	N/A
IR radiation, eye		EIR	W•m-2	100	N/A	N/A	N/A	N/A	N/A
Skin thermal		EH	W•m-2	3556	14.95	N/A	N/A	N/A	N/A

^{*} Small source defined as one with α < 0,011 radian. Averaging field of view at 10000 s is 0,1 radian.

^{**} Involves evaluation of non-GLS source

Page 16 of 19

Report No.: 9712301837

Calculation for classification Without diffuser

				IEC 624	71				
Clause	Requirem	ent + Te	st	Result – R	emark				Verdict
Table 6.1	Emission	limits for	risk groups o	of continuou	is wave lamps-	Tested at	200mm		Pass
Risk	Action	_			Emis	ssion Meas	surement		
	spec-	Sym- bol	Units	Е	xempt	Low	risk	Mod	risk
	trum			Limit	Result	Limit	Result	Limit	Result
Actinic UV	SUV(λ)	Es	W•m-2	0,001	N/A	0,003	N/A	0,03	N/A
Near UV		EUVA	W•m-2	10	N/A	33	N/A	100	N/A
Blue light	Β(λ)	LB	W•m-2•sr-1	100	40	10000	N/A	4000000	N/A
Blue light, small source	Β(λ)	EB	W•m-2	1,0*	N/A	1,0	N/A	400	N/A
Retinal thermal	R(λ)	LR	W•m-2•sr-1	28,000/α =2,8E5	11447	28000/α	N/A	71000/α	N/A
Retinal thermal, weak visual stimulus**	R(\lambda)	LIR	W•m-2•sr-1	6000/α	N/A	6000/α	N/A	6000/α	N/A
IR radiation, eye		EIR	W•m-2	100	N/A	N/A	N/A	N/A	N/A
Skin thermal		EH	W•m-2	3556	23.2	N/A	N/A	N/A	N/A

^{*} Small source defined as one with α < 0,011 radian. Averaging field of view at 10000 s is 0,1 radian.

^{**} Involves evaluation of non-GLS source

Page 17 of 19

Report No.: 9712301837

Appendix 2 Photos Source without diffuser

Source with diffuser

Distance between led's

Page 18 of 19

Report No.: 9712301837

Led side

Dilates about source

Report No.: 9712301837

Page 19 of 19

Appendix 3

Test instruments

SII Ref. No.	Instrument Type	Manufacturer	Model	Expire Cal. Date	SII Lo- cation	Accreditation Lab
6501633	Photodiode sensors and in- tegrating spheres	Ophir Optronics	3A-IS	08/17	Telem. Lab	V
6501988	Thermal Head	Ophir Optronics	3A-P-FS-RoHS	12/17	Telem. Lab	√
6500711	CCD Camera	Spiricon	USB-SP620U	-	Telem. Lab	√
606686	Laser Power/Energy Monitor	Ophir Optronics	VEGA Display	08/17	Telem. Lab	√
6501928	Spectro radiometer	OceanOptics	HR2000+ES		Telem. Lab	-
5517	Calibration lamp Deuterium +Halogen	OceanOptics	DH-2000	50 h opera- tion	Telem. Lab	√
6501632	Spectro radiometer	Control Development	NIR-256-1.7 T1	05/17	Telem. Lab	-